Design and Analysis of
Algorithms

Feasible Solution vs. Optimal Solution

e DFS, BFS, hill climbing and best-first search
can be used to solve some searching
problem for searching a feasible solution.

e However, they cannot be used to solve the
optimization problems for searching an (the)
optimal solution.

The branch-and-bound strategy

e This strategy can be used to solve
optimization problems without an
exhaustive search in the average
case.

Branch-and-bound strategy

e 2 mechanisms:

— A mechanism to generate branches when searching
the solution space

— A mechanism to generate a bound so that many
branches can be terminated

Branch-and-bound strategy

It is efficient in the average case because many branches
can be terminated very early.

Although it is usually very efficient, a very large tree may
be generated in the worst case.

Many NP-hard problem can be solved by B&B efficiently
in the average case; however, the worst case time
complexity is still exponential.

Branch and bound is an algorithm design paradigm
which is generally used for solving combinatorial
optimization problems. These problems are typically
exponential in terms of time complexity and may require
exploring all possible permutations in worst case. The
Branch and Bound Algorithm technique solves these
problems relatively quickly.

Types

e FIFO Branch and Bound
e LIFO Branch and Bound
e Least Cost Branch and Bound

Travelling Salesman Problem using
Branch and Bound

 The travelling salesman problem (also called
the travelling salesperson problem or TSP)
asks the following question: "Given a list of
cities and the distances between each pair of
cities, what is the shortest possible route that

visits each city exactly once and returns to the
origin city?"

State Space Tree

1

1
K |
4 \
3
eConsider a salesman travelling from point 1 going to 4 and then back to 1. We need the cost of
a tour for which the cost is minimum

We generate a state space tree, which explores all the different possibilities of the possible tour
that might be conducted

*For branch and bound we will use level order

*Backtracking uses DFS, it is much time consuming as gives individual solutions for all path, and
then if for any solution, a low value is found, then discards the others.
For optimization problems, we avoid backtracking, we use it for permutation problems.

State Space Tree
1 1

3

*For branch and bound we will use level order. We will generate the cost of every node while
generating the levels.

*For any node, if the cost of a node is greater than some upper bound then we will kill that
node. No further children will be explored for that node. We will not generate all the nodes.

*We will only generate nodes which are fruitful, i.e. we will try the path, i.e. the ones which
takes us closer to the optimized solution path.

@

5

Cost Adjacency Matrix

1 2 3 4 5
o | 20| 30| 10|11
15| 16| 4 |2
3| 5| o | 2 |4
19| 6| 18| «© |3

16 |4 |7 |16 |

Traveling Salesperson Problem: Find the least cost tour starting at 1,
traveling through the other nodes exactly once and returning to 1.

Traveling Salesperson Problem: Find the least cost tour starting at 1,

@

5

Cost Adjacency Matrix

1 2 3 4 5
o | 20| 30| 10|11
15| 16| 4 |2
3| 5| o | 2 |4
19| 6| 18| «© |3

16 |4 |7 |16 |

traveling through the other nodes exactly once and returning to 1.

Step 1 to reduce: Search each row for the smallest value

10

Cost Adjacency Matrix

Subtract each rows with the smallest value

1 2
o| 100 20 0| 1
13| o | 14] 2| O

1| 3| o | 0] 2
16| 3| 15| o | O
121 0| 3 12|

10

21

2

1

Cost Adjacency Matrix

2

3

4

5

o| 100 20 0| 1
13| o | 14] 2| O
1| 3| o | 0] 2
16| 3| 15| o | O
121 0| 3 12|
1 0 3 0 0

Step 2 to reduce: Search each column for the smallest value

10

21

Cost Adjacency Matrix

Subtract each column with the smallest value

1 2 3 4 5
o| 10 17 0| 1
12| o | 11| 2| O
O| 3| o | 0] 2
15| 3| 12| «© | O

111 0| 0 |12]| «©
1 0 3 0 0

10

Reduced cost: 25
i.e. The minimum cost of the tour is at least, it also may be more than 25

Cost Adjacency Matrix

Subtract each column with the smallest value

1 2 3 4 5
o| 10 17 0| 1
12| o | 11| 2| O
O| 3| o | 0] 2
15| 3| 12| «© | O

111 0| 0 |12]| «©
1 0 3 0 0

10

Reduced matrix

1 2 3 4 5
o| 10 17 0| 1
12| o | 11| 2| O
O| 3| o | 0] 2
15| 3| 12| «© | O

111 0| 0 |12]| «©

State Space Tree

Now we will find the cost with the help of the state space tree

For every node, we will be finding a cost

Cost of 15t matrix= 25 i.e. the reduced cost

We will be maintaining a upper bound value which will be initially o

Thiswill update once we have reached the leaf node (the value of upper will not be checked
for every node)

Reduced matrix

State Space Tree

1 2 3 4 5
o| 10 17 0| 1
12| o | 11| 2| O
O| 3| o | 0] 2
15| 3| 12| «© | O

111 0| 0 |12]| «©

We will be finding the cost of 2"d node 2, i.e. node 1 to node 2 (1,2)
Make the 15t row and 2" column as oo

State Space Tree

Reduced matrix

o | 012 o

We will be finding the cost of 2"d nhode 2, i.e. node 1 to node 2 (1,2)

Make the 15t row and 2"9 column as oo
Once we come from 1 to 2, we should not go back to 1, so (2,1) is also «©

State Space Tree

Reduced matrix

O| o | o] O] 2

4150012000

11| o | 0 | 12| ©

We will be finding the cost of 2"d node 2, i.e. node 1 to node 2 (1,2)

Make the 15t row and 2" column as oo

Once we come from 1 to 2, we should not go back to 1, so (2,1) is also «©

Now check if the matrix is reduced or not (i.e. the minimum values for all rows and columsare 0
or not)

5

So cost is C(1,2) + previous reduced cost + any more reduction done
=10+ 25+ 0 =35 (cost of 24 node is 35)

State Space Tree

Reduced matrix

O| o | o] O] 2

15| o | 12| ©o | O

11| o | 0 | 12| ©

We will be finding the cost of 2"d nhode 2, i.e. node 1 to node 2 (1,2)
Make the 15t row and 2"? column as oo

Once we come from 1 to 2, we should not go back to 1, so (2,1) is also «©
Now check if the matrix is reduced or not

So cost is C(1,2) + previous reduced cost + any more reduction done
=10+25+0=35

Reduced matrix

1 2 3 4 5
o| 10 17 0| 1
12| o | 11| 2| O
O| 3| o | 0] 2
15| 3| 12| «© | O

111 0| 0 |12]| «©

We will be finding the cost of 3™ node 3, i.e. node 1 to node 3 (1,3)
Make the 15t row and 3™ column as

State Space Tree

Reduced matrix

1 2 3 4
0| 00 | oo | o
12| oo | 0 | 2
o| 3| o | O
15| 3| o | «©

11| 0 | o | 12

State Space Tree

We will be finding the cost of 3™ node 3, i.e. node 1 to node 3 (1,3)

Make the 15t row and 3" column as o
Also, we should not have any path going back from 3to 1, so (3,1) isalso «

State Space Tree

Reduced matrix

12| o | o | 21| O

15 3| o0 0 0

11| O | 0o | 12| o |©

11 0 0 0

We will be finding the cost of node 3, i.e. node 1 to node 3 (1,3)

Make the 15t row and 3 column as oo

Also, we should not have any path going back from 3to 1, so (3,1) isaso «
Check for zerosfor al rows and columns, i.e. for reduction

If not reduced then reduce with the minimum value found

State Space Tree

Reduced matrix

O | 0o | 12| o |©

0 0 0
We will be finding the cost of 3™ node 3, i.e. node 1 to node 3 (1,3)
Make the 1%t row and 3" column as o
Also, we should not have any path going back from 3 to 1, so (3,1) is also «©
Check for zeros for all rows and columns, i.e. for reduction

So cost= C(1,3) + previous reduced cost + any more reduction done = 17+25+11=53

Reduced matrix

3

State Space Tree

10

17

12

11

0

Q0

15

12

O N O

11

0

0

12

Q0

Similarly we repeat for 4t and 5t vertex and get Cost of 4 as 25 and cost of 5 as 31

Moving to the next level vertices, we should see what we should explore next.

Now, if we explore the node of children sequentially, i.e. 15t of 2, then of 3, then of 4 and
lastly of 5, then it is known as FIFO branch and bound. The reverse order is LIFO branch and

bound.

Else if we explore the children of least cost node 1°t and later the others as required then it is

Least cost branch and bound (LC branch and bound)

Reduced matrix of node 4, i.e. (1,4)

State Space Tree

1 2 3 4
0 | 00 | oo | o
12| o | 11| o
O] 3| © |
o| 3| 12| ©
11| 0 | O | «©

If we explore the children of nodes 4, we have vertex 2, 3 and 5, we

consider the matrix given above

State Space Tree

Reduced matrix of node 4

1 2 3 4 5

c© | 6O | & | O | OO

11| o | O | 0o | ©

If we explore the children of nodes 4, we have vertex 2, 3 and 5, we consider the matrix given
above

Now for the vertex (4,2), we have 4t rows as co and 2" columns as

Consider the path 1-4 and 4-2, so it should not go back to 1, therefore (2,1) is

All rows and columns are reduced (i.e. has 0)

Now Cost is C(4,2)+ C(4)+ cost of reduction = 3+25+0=28

State Space Tree

Reduced matrix of node 4

1 2 3 4 5

c© | 6O | & | O | OO

o« | 6O | & | OO | OO

11| o | O | 0o | ©

If we explore the children of nodes 4, we have vertex 2, 3 and 5, we consider the matrix
given above

Now for the vertex (4,2), we have 4t" rows as co and 2™ columns as oo

Consider the path 1-4 and 4-2, so it should not go back to 1, therefore (2,1) isw

All rows and columns are reduced (i.e. has 0)

Now Cost is C(4,2)+ C(4)+ cost of reduction
= 3+25+0=28

State Space Tree

Reduced matrix of node 4

1 2 3 4 5

c© | 6O | & | O | OO

11| O | O | oo |

If we explore the children of nodes 4, we have vertex 2, 3 and 5, we
consider the matrix given above

Similarly for (4,3) and (4,5) is found to be 50 and 36 respectively
Now amongst all cost we again get 28 as least, so we should explore
that path, i.e. (4,2)

State Space Tree

Reduced matrix of node 4

1 2 3 4 5

c© | 6O | & | O | OO

O| 3| o | o | 2

o| 3| 12| o | O

11| O | O | oo |

If we explore the children of nodes 4, we have vertex 2, 3 and 5, we consider
the matrix given above

Similarly for (4,3) and (4,5) is found to be 50 and 36 respectively

Now amongst all cost we again get 28 as least, so we should explore that
path, i.e. (4,2)

So nodes remaining for the chosen path are 3 and 5.
Lets explore them

State Space Tree

Reduced matrix of (4,2)

1 2 3 4 5

O | O | O | O | OO

11 | o | O | o0 | ®©

For the path (2,3), we have taken the reduced matrix as obtained
priorly

State Space Tree

Reduced matrix of (4,2)

1 2 3 4 5

O | O | O | O | OO

11 | oo | 0 | 0 | ®©

For the path (2,3), we have taken the reduced matrix as obtained
priorly.

2" row and 3" column is made o

Again (3,1) is made o, as we cant go back from 3 to 1 viathis path.

State Space Tree

Reduced matrix of (4,2)

1 2 3 4 5

O | O | O | O | OO

11| o | 0o | o | © | 11

For the path (2,3), we have taken the reduced matrix as obtained
priorly.

2" row and 3" column is made o

Again (3,1) is made o, as we cant go back from 3 to 1 viathis path.
Start reducing.

State Space Tree

Reduced matrix of (4,2)

1 2 3 4 5

O | O | 6O | O | OO

O| | | 00| | 11

13

For the path (2,3), we have taken the reduced matrix as obtained priorly.

2" row and 3" column is made o

Again (3,1) is made o, as we cant go back from 3 to 1 viathis path.

Start reducing.

Now cost is evaluated as C(2,3)+ previous reduced cost of respective node + any more
reduction done

=11+28+13=52

State Space Tree

Reduced matrix of (4,2)

1 2 3 4 5

O | O | 6O | O | OO

O| | | 00| | 11

13

For the path (2,3), we have taken the reduced matrix as obtained priorly.

2" row and 3" column is made o

Again (3,1) is made o, as we cant go back from 3 to 1 viathis path.

Start reducing.

Now cost is evaluated as C(2,3)+ previous reduced cost + any more reduction done
=11+28+13= 52

State Space Tree

Reduced matrix of (4,2)

1 2 3 4 5

O | O | 6O | O | OO

11 | o | O | o0 | ®©

For the path (2,5), we have taken the reduced matrix as obtained
priorly.

Similarly, on calculating as before we get the cost as 28
Therefore for this path we get again the least as 28.

Hence select this path and explore its children.

State Space Tree

Reduced matrix of (2,5)

1 2 3 4 5

O | O | O | O | OO

For the path (2,5), we have taken the reduced matrix as obtained
priorly.

Similarly, on calculating as before we get the cost as 28

Therefore for this path we get again the least as 28.

Hence select this path and explore its children. Only 3 is left to be
explored for this path.

State Space Tree

Reduced matrix of (2,5)

1 2 3 4 5

O | O | 6O | O | OO

Here nothing is left, so we will have the least cost as previously i.e. 28

We reached the end, now we have to move back to 1.

Since we have reached the end, i.e. leaf node, update upper to 28 here.
Every node whose cost is greater than upper, i.e. 28 gets killed here, i.e. we
don’t need to explore them.

The cost of the tour is 28 and the path is 1-4-2-5-3-1
This is the shortest tour of all the nodes.

